

Building and Vegetation Rasterization for the
Three-dimensional Wind Field (3DWF) Model

by Giap Huynh, Yansen Wang, and Chatt Williamson

ARL-TR-5419 December 2010

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-5419 December 2010

Building and Vegetation Rasterization for the
Three-dimensional Wind Field (3DWF) Model

Giap Huynh, Yansen Wang, and Chatt Williamson

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2010
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Building and Vegetation Rasterization for the Three-dimensional Wind Field
(3DWF) Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Giap Huynh, Yansen Wang, and Chatt Williamson
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIE-D
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-5419

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Land surface morphology information, such as vegetation and buildings, are key inputs for the parameterizations used in the
Three-dimensional Wind Field (3DWF). The microscale land morphology data are often not available and/or are not in a
format that 3DWF can readily use. We have developed a novel method to create the land morphology data set and rasterize it
to the model grid using Google Maps™ and the accompanying application programming interface (API). This report
documents the algorithm, the development of a graphical user interface (GUI) prototype, the process of rasterizing
morphological features for a given model domain and terrain map, and step by step procedures for producing necessary input
data for the 3DWF model.

15. SUBJECT TERMS

Rasterization, building, vegetation, 3DWF, GUI

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

38

19a. NAME OF RESPONSIBLE PERSON

Giap Huynh
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(301) 394-1156
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

Acknowledgments v

1. Introduction 1

2. Rasterization Algorithm 1

2.1 Triangle Rasterization ...1

2.2 Triangular Decomposition of Polygons ..3

3. Implementation 5

3.1 GUI Module ..6

3.1.1 GUI Module Implementation ..6

3.1.2 GUI Module Use Example ..8

3.2 Fortran90 Program Module ...11

4. Photogrammetric Parallax Correction 12

5. Mapping Geo-coordinates to 3DWF Model Grid 13

6. Building and Vegetative Canopy Representations 14

7. Outputs 15

8. Example Rasterization of “U-shaped” Polygon 18

9. Conclusion 19

10. References 20

Appendix A. Procedure to Prepare Input Files for the 3DWF Model 21

Appendix B. Visualization of an Augmented Terrain Elevation File 27

List of Symbols, Abbreviations, and Acronyms 29

Distribution List 30

 iv

List of Figures

Figure 1. Illustration of the edge equation. ..2

Figure 2. Triangle rasterization from implicit edge equations (left) and of a rectangle 1234
(right) with left and bottom edges included. ..3

Figure 3. Types of polygons from left to right: convex, concave, “U-shaped,” “L-shaped,”
and a 16-sided estimate of a circle. ..4

Figure 4. Triangle decomposition process. ..4

Figure 5. Google Maps based GUI Web page. ..7

Figure 6. Polygon drawing of a rectangular building’s roof. ...8

Figure 7. Polygon drawing of a nearby building from the previous map.9

Figure 8. Contents of data file “GoogleblgcoordsHR.txt” for the polygons illustrated in
figures 6 and 7. ...11

Figure 9. Photogrammetric parallax correction (true coordinate adjustment) illustration.13

Figure 10. Mapping polygon vertex to model grid process. ..14

Figure 11. Illustration of building augmentation of terrain elevation map for the building
resolving map. ..15

Figure 12. Content of files “CanopygridslayersHR.txt” (left) and “CanopytypeHR.txt”
(right). ..16

Figure 13. Contents of the canopy patch ID map file (top) and the terrain elevation (m) map
file (bottom). ..17

Figure 14. Example of an augmented terrain elevation (m) map augmented by a rasterized
“U-shaped” building. ...18

Figure A-1. Polygon drawing of a building with coordinate adjustment case (top) and its data
file (bottom). ..24

Figure B-1. Two-dimensional (top) and 3-D (bottom) MatLab visualizations of an augmented
terrain map illustrating two 10-m-high buildings fused with the terrain.27

v

Acknowledgments

We sincerely thank Dr. Dennis Garvey for his timely and extensively review of this report to
catch any errors and unclear issues. His effort is greatly appreciated. We also extend our
appreciation to Dr. Donald Hoock for his general guidance and support.

vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

The Three-dimensional Wind Field (3DWF) model is a microscale mass consistent diagnostic
model (Wang et al., 2005, 2010). Land surface morphology information, such as vegetation and
buildings, are key inputs for the parameterizations used in 3DWF. Microscale land morphology
data are often not available and/or are not in a format that 3DWF can readily use. We have
developed a novel method to create the land morphology data set and rasterize it to the model
grid using Google Maps™ and the accompanying application programming interface (API).

Google Maps™ provides users a convenient overview of any region in the world using relatively
recent satellite imagery. This imagery is also geo-referenced, providing relatively accurate
latitude and longitude information. Leveraging these features and the Google Maps™ API, a
simple application can be developed that provides a user with the capability to geo-locate a
building or vegetative canopy within a particular 3DWF model domain. However, there is still a
need to rasterize these objects (buildings and vegetative canopies) and combine them with the
terrain elevation information before the whole domain can be used by the 3DWF model for an
assessment of the wind flow over complex or urban terrain.

This report documents the process of rasterizing morphological features such as buildings and
vegetative canopies for a given model domain and terrain map, and a procedure to produce
morphology data and maps necessary for 3DWF. The main rasterization algorithm was first
prototyped in MatLab™ and then written in Fortran90 for quicker execution. The prototyped
algorithm in MatLab has proven useful for cross checking and testing purposes. Also a Google
Maps-based JavaScript graphical user interface (GUI) program was designed and implemented
to generate the data file necessary for the main rasterization program.

2. Rasterization Algorithm

We employ one of the most popular rasterizing approaches (Sheffer, 2005) based on line
sweeping of a polygon decomposed into triangles. The advantage of this process has been widely
documented, as most current graphics systems support hardware rasterization of triangles and
display them efficiently. We first address the rasterization of a triangle and then the
decomposition of a polygon into triangles.

2.1 Triangle Rasterization

The approach we take for rasterizing a triangle starts with the concept of an edge equation, which
is characterized by the general form of a linear equation Ax+By+C=0. Two vertices of a triangle
define a unique line in the coordinate plane. This line divides the coordinate plane into two half

2

planes, a positive or upper half-plane (Ax+By+C>0) and a negative or lower half-plane
(Ax+By+C<0), as illustrated in figure 1. Now, for each of the three sides of a triangle, we can
define an edge equation. Further, we can define the interior of the triangle as the intersection of
the appropriate half-planes. By appropriate we mean given an ordering of the vertices, the
interior of the triangle is given by the intersection of the positive or negative half-planes defined
by the triangle edges. For example, if the vertices are ordered clockwise, then the interior of the
triangle is given by the intersection of the positive half-planes.

Figure 1. Illustration of the edge equation.

Next, we need to determine the coefficients (A, B, and C) for each of the edge equations. To
determine these coefficients, we first consider two vertices of a given triangle v(x1, y1) and
v(x2, y2). Since these vertices lie on the same line we have the following:

 𝐴𝑥ଵ + 𝐵𝑦ଵ + 𝐶 = 0 (1)
 𝐴𝑥ଶ + 𝐵𝑦ଶ + 𝐶 = 0, (2)

which when rewritten using matrix algebra takes the form

 ቂ𝑥ଵ 𝑦ଵ𝑥ଶ 𝑦ଶቃ ቂ𝐴𝐵ቃ = −𝐶 ቂ11ቃ. (3)

Solving this system given

 ቂ𝑥ଵ 𝑦ଵ𝑥ଶ 𝑦ଶቃିଵ = ଵ௫భ௬మି௫మ௬భ ቂ 𝑦ଶ −𝑦ଵ−𝑥ଶ 𝑥ଵ ቃ, (4)

we have

 ቂ𝐴𝐵ቃ = ି஼௫భ௬మି௫మ௬భ ቂ𝑦ଶ−𝑦ଵ𝑥ଵ−𝑥ଶቃ. (5)

Next for convenience set = 𝑥ଶ𝑦ଵ − 𝑥ଵ𝑦ଶ, which then gives us

 𝐴 = 𝑦ଶ−𝑦ଵ (6)

 𝐵 = 𝑥ଵ−𝑥ଶ. (7)

3

It should be noted that vertex order was not considered in the previous derivation. While
ordering is not essential for the general derivation of the coefficients, it is important in the
rasterization algorithm as discussed earlier.

Now that we have the general form of the coefficients we can define the edge equations as
follows

 𝐸ଵ = 𝐴ଵ𝑥 + 𝐵ଵ𝑦 + 𝐶ଵ (8)
 𝐸ଶ = 𝐴ଶ𝑥 + 𝐵ଶ𝑦 + 𝐶ଶ (9)
 𝐸ଷ = 𝐴ଷ𝑥 + 𝐵ଷ𝑦 + 𝐶ଷ. (10)

Here for clockwise ordering of the triangle’s vertices the coefficients are

𝐴ଵ = 𝑦ଶ−𝑦ଵ 𝐵ଵ = 𝑥ଵ−𝑥ଶ 𝐶ଵ = 𝑥ଶ𝑦ଵ − 𝑥ଵ𝑦ଶ𝐴ଶ = 𝑦ଷ−𝑦ଶ 𝐵ଶ = 𝑥ଶ−𝑥ଷ 𝐶ଶ = 𝑥ଷ𝑦ଶ − 𝑥ଶ𝑦ଷ𝐴ଷ = 𝑦ଵ−𝑦ଷ 𝐵ଷ = 𝑥ଷ−𝑥ଵ 𝐶ଷ = 𝑥ଵ𝑦ଷ − 𝑥ଷ𝑦ଵ. (11)

Finally, since for clockwise ordering the interior of a triangle is defined as the intersection of the
positive half-planes, we have 𝐸ଵ, 𝐸ଶ, 𝐸ଷ > 0 when a grid point is in the interior of the triangle.

One last consideration is associated with optimization. We would like to limit the line sweep to
only those grid points that are near the triangle. This is easily done by defining a bounding box
with coordinate pairs (xmin,ymin) and (xmax,ymax), as illustrated in figure 2. This limits the
algorithm’s test space to the set{𝑥, 𝑦: 𝑥௠௜௡ ≤ 𝑥 ≤ 𝑥௠௔௫, 𝑦௠௜௡ ≤ 𝑦 ≤ 𝑦௠௔௫}. Note that the
graphics coordinate system is defined such that x increases left to right and y increases top to
bottom. For such a system, z increases into the page and “clockwise” appears
“counterclockwise” when viewed from above the page. y x

Figure 2. Triangle rasterization from implicit edge equations (left) and of a rectangle 1234 (right) with left and
bottom edges included.

2.2 Triangular Decomposition of Polygons

A key geometric property of a triangle is that it is a convex polygon. This fact about triangles is
what is exploited by the rasterization algorithm. Another nice geometric property is that all

1

2 3

4

(x3,y3)

(x2,y2)
(x1,y1)

(xmin,ymin)

(xmax,ymax)

bounding box

+ + +

++

- -

--

4

polygons of higher order can be decomposed into the union of a set of triangles such that the
intersection of any two triangles of the set is either the empty set, a singleton (i.e., common
vertex), or an edge. These two facts imply that both convex and concave polygons can be
rasterized given a proper triangulation. Figure 3 illustrates various types of convex and concave
polygons.

Figure 3. Types of polygons from left to right: convex, concave, “U-shaped,” “L-shaped,” and a 16-sided
estimate of a circle.

For convex polygons, the decomposition is trivial. A simple algorithm for triangulation is to
pick a vertex of the polygon as a starting point, call this point P1 (figure 4), then traverse the
polygon clockwise to P2 and then P3 to define the first triangle P1P2P3. Next, take the starting
point P1 and the last vertex of the previous triangle P3 and advance clockwise to the fourth point
of the polygon P4. This would then define the second triangle P1P3P4. Repeat this process with
the next point in the polygon until the polygon has been completely traversed. A second
algorithm, which is just as simple, involves adding a point that is in the interior of the polygon
and then traversing the vertices of the polygon to create the triangulation using the interior point
as a common vertex. For our purposes, we implemented the first of these two algorithms.

Figure 4. Triangle decomposition process.

P1

1
1

P2
2

2

P3

3

3

P4

4 4
5

5

6

6

8 7

5

Triangulation of concave polygons is not so trivial. Perhaps the easiest case is a concave
quadrilateral, where the first algorithm works all the time but the second algorithm is a little bit
tricky. The issue with the second algorithm is finding a suitable interior point. The second
algorithm is also less efficient since it would result in four triangles rather than two. In general,
the interior point algorithm will always have two more triangles in its set than the edge
algorithm.

Since triangulation of a concave polygon is a little bit more complicated, we limit our cases to
two different shapes. The first shape we consider is the “L” shaped polygon. The triangulation
for this polygonal shape is trivial if one chooses the right vertex as the starting point of the
traversal (see figure 4). If we select the point where the polygon is concave then we can traverse
the polygon just as we did with the first algorithm for convex polygons. This is the method that
we have implemented. The second shape that we consider is the “U” or “C” shaped polygon.
Once again, if we order the vertices starting from one of the vertices where it is concave, we can
traverse the polygon to produce the triangulation. However, eventually the concavity of the
polygon will spoil our triangulation. This is easily fixed by moving to the next vertex that is part
of the concave shape (i.e., in figure 4, we move to vertex 8). From here, we complete the
triangulation. A second method for the “U” shaped polygons is to first decompose the polygon
into a set of quadrilaterals that can then be trivially decomposed into triangles. We implemented
the first method of triangulation for “U” shaped polygons.

Finally, while it seems that we are fairly restrictive in our use case for defining polygons, this is
not the case. While it may take defining a few more polygons, almost any polygon can be
decomposed into the union of a set of triangles and quadrilaterals.

In light of the selections of the methods of triangulation described previously, it is imperative
that the user of this tool follow the conventions discussed in this section when defining polygons
to be rasterized. First and foremost, one must always traverse and/or define the vertices of the
polygon using clockwise motion. Second, for concave polygons, one must always start the
polygon at a vertex that is part of the concave section of the boundary.

3. Implementation

Through the initial design process of the building and vegetation tool, we decided to implement
two separate modules, one module for the GUI for the preparation and production of the
geographical information using Google Maps and a second module for the implementation of the
line sweep with implicit edge equations.

In this section, we discuss the implementation of the two modules. We start by discussing the
implementation of the Google Maps-based GUI and some simple use cases. This is followed by a
discussion of the implementation of the algorithm using Fortran90.

6

3.1 GUI Module

3.1.1 GUI Module Implementation

JavaScript provides a simple yet powerful means to develop GUIs for Web-based applications. A
number of toolkits exist that provide for a simple foundation to build rich user interfaces. One
such toolkit for geographic information is provided by Google through the Google Maps API.

By design, JavaScript limits access to local resources. This is done to protect against the
execution of malicious code. However, ActiveX components or XPCOM extensions can be used
by JavaScript to write data to the local file system. Since there is an inherent risk, it is very
important to only use these types of objects (ActiveX or XPCOM) from a trusted source in order
to minimize the exposure of a computer system to malware. Without the availability of these
trusted components, the use of JavaScript for the implementation of a GUI for the tool would be
less than ideal.

While HTML is an open standard, its implementation by the various vendors is often muddled
with proprietary extensions. While we have tried to maintain compatibility with the various Web
browsers available on the market today, the requirement to write files on the client side limited
our initial implementation to Microsoft’s Internet Explorer (IE) Web browser. The Web
application renders fine in Mozilla Firefox and is fully functional sans the capability to save the
geographic data through the GUI. Currently, a PC Vista user who prefers to run on Mozilla
Firefox can also save data to a local file by downloading an add-on named IE Tab2 (FF3.6+),
which is freely available on the Internet. This add-on allows switching to IE from inside Firefox
in order to run the GUI. The procedure to obtain the add-on is provided at the beginning of
appendix A.

Figure 5 is a screen capture of the GUI module using the most recent version, Google Maps API
v.3, rendered in Mozilla Firefox. It has been implemented as a Web page using HTML and
JavaScript. The initial interface discussed here was to demonstrate a proof of concept and the
capability to leverage the Geographic Information System (GIS) information available through
the Google Maps API. It provides the user an interactive way to create polygonal outlines of
vegetative canopies and buildings that can later be rasterized by the rasterization module. The
GUI consists of two panels, a map panel and an input panel. The map panel is an embedded
Google Maps display. Its display control is self-explanatory: this component contains the
embedded Google Map that the user interacts with when the control is in “satellite” display mode
to mark and/or define the polygonal boundaries of vegetative canopies and buildings.

7

Figure 5. Google Maps based GUI Web page.

The input panel provides two functions. The first function is to display a list of coordinates that
the user has marked, defining the vertices of a polygon that indicate the boundaries of a canopy
or building. These coordinates are displayed at the top of the input panel. The second function is
to gather information about the polygon that is currently being digitized so that it can be properly
rasterized later by the rasterization program. These inputs are explained in depth in appendix A.

While the satellite imagery that Google Maps uses is geo-referenced and orthorectified, there are
still instances in the imagery where the off nadir angle of the image leads to significant
photogrammetric parallax. To correct for this error, we have implemented a simple base point
correction algorithm, which is discussed in section 4. Since the satellite imagery is orthorectified,
the user can select a corner of the building that is at the surface or ground level, which can be
used to make a simple shift correction of a defined polygon. The input to make this correction, if
desired, is at the bottom of the input panel.

8

3.1.2 GUI Module Use Example

Following the convention discussed in section 2, the user uses the mouse to click on a corner
point creating the first vertex of the polygon defining the canopy area or building to be
rasterized. Continuing clockwise, the user marks each successive vertex of the polygon, which
the user interface labels sequentially starting from 1 (1 to 4 in figure 6). The resulting polygon is
represented by the blue shaded area. To simplify the rasterization of a complex canopy footprint,
it is recommended that the user decompose the canopy footprint into overlapping quadrilateral
(or triangular, if quadrilaterals are not feasible) blocks with the lowest canopy height block being
drawn first and then going to the next taller, etc. To maintain continuous coverage, the canopy
blocks with lower canopy heights should be drawn with a little overlap into the higher canopy
height blocks. This is done to avoid the creation of a gap between two adjacent blocks due to the
adjusting and shifting of the edge grids during the rasterization process (see the right side of
rectangle in figure 2). The user can also define a canopy polygon without decomposition as long
as the polygon is convex or is one of the special cases discussed earlier for concave polygons.

Figure 6. Polygon drawing of a rectangular building’s roof.

9

With each click on the Google Maps interface, a new longitude and latitude pair is added to the
“Longitude Latitude” text box. The remaining input controls are awaiting user input about the
properties of the digitized object, such as the canopy type (whether building or vegetation),
canopy patch identification (ID), building or average canopy height, the polygon’s number of
sides, vegetative canopy type, high or low resolution map, and estimated canopy cover density.
The user must also set the path and filename where the data should be saved.

As stated previously, it is important that the user follow the instructions provided in appendix A
to complete all the steps in digitizing each polygon. It is advisable to digitize only one canopy or
building object at a time to avoid confusion. After each polygon is done, the user needs to reset
the input controls to their default values. This is done by clicking the “Next Polygon” button.
Figure 7 displays the drawing after a second building has been digitized.

Figure 7. Polygon drawing of a nearby building from the previous map.

10

From the previous example, the saved file name, “GoogleblgcoordsHR.txt,” is stored in specified
subdirectory and its contents are shown in figure 8. This file stores one or more records of
polygonal data derived from the user’s input. The polygonal data record has the following
format:

• The first row is the patch ID of one enclosed area. The user is free to assign an ID
according to their own needs. Many four-sided polygonal blocks within a big complex
patch or canopy can have the same ID and the same height. A separated or disjoint canopy
or patch can also have the same ID. For a low-resolution or canopy-resolving map, the
patch is assumed to have one average height for every grid point.

• The second row lists the canopy’s height in meters.

• The third row gives the number of vertices.

• The fourth row is the coded number indicating canopy type (0 = building, 1 = evergreen,
2 = deciduous).

• The fifth row indicates whether the map is high (building resolving, set to 1) or low
(canopy resolving, set to 0) resolution.

• The sixth row lists the density in percentage of the canopy’s cover patch area. Therefore, a
canopy only patch or polygon has a density value of 100.

• The seventh row lists the total number n of the longitude and latitude pairs of vertices.

• The eighth through 8+n-1 rows list the longitude and latitude pairs as they appeared in the
“Long and Lat” text box for each polygon.

• The (8+n)th row lists an integer number indicating which vertex (labeled corner number)
should be used for correcting the location of the base of a building. We call this the true
coordinate adjustment and it is used to correct photogrammetric parallax. This is an integer
ranging from 0 (indicating no adjustment) to 16 (corner numbered 16 for up to 16 sides).
The chosen vertex must have its base visible to be located by the crosshair cursor and by a
mouse’s click. The default value for this input is 0, indicating no adjustment required or
requested.

• The (8+n+1)th row is the longitude and latitude pair of the visible chosen vertex to be used
in the building location correction. Two zeros indicate no correction selected.

• Finally, the last row of the polygon data record displays the polygon’s sequential order
number in the file starting from 1. Hence, the last number at the bottom of the file indicates
the total number of polygon records and is important for the Fortran90 main program to
identify the maximum value during looping.

11

Figure 8. Contents of data file “GoogleblgcoordsHR.txt” for the
polygons illustrated in figures 6 and 7.

After the filename and path are typed in, the user clicks on the “Save” button each time to save
each polygon record to the named file. The user must also click “Clear Data” button to the right
to clear old displayed latitude and longitude values before entering any new information for a
new polygon. The “Save” button saves whatever displayed in the “Longitude Latitude” text box;
therefore, if old values are still there, they will be saved as well in the new polygon’s information
and this will cause error in the reading of a polygon record format. The filename input is
persistent and is not cleared. An old saved data file from a previous session can be used to add
more data records too, but the user would have to manually edit the polygon record sequence
number since it will start again at 1. Later on, the user needs to copy this data file to the same
directory where the main Fortran90 module is located for the rasterization process.

3.2 Fortran90 Program Module

The rasterization code was initially prototyped using MatLab. However, since execution speed
was of greater importance to our application, the algorithm has since been implemented using
Fortran90.

12

The main function of this module is to rasterize the digitized canopy polygons that the user
created using the GUI module and produce the morphology input files for the 3DWF model.
There were two versions implemented in Fortran90. The first named “Rasterize_4sides.f90” was
designed to rasterize triangles and quadrilaterals. Since it is difficult to accurately represent a
shape such as a circle with a limited number of quadrilaterals, a second version was implemented
named “Rasterize_16sides.f90,” which could rasterize up to a hexadecagon (16-sided polygon).

For development purposes, we compile and run the rasterizer in a Linux environment. Upon
execution, the rasterizing application prompts the user with a series of questions. The user’s
responses are then used to create the output filenames. There are two input files that the program
reads, the text file containing the polygon records created by the GUI module
(“GoogleblgcoordsHR.txt” for this example) and the terrain map file. Here the user is directed to
the detailed instructions in part II of the appendix A to run this module. The program then
extracts the terrain height, latitude, and longitude data from the terrain data file of a gridded
model domain. It then separates each data type and also creates a map of relative terrain heights.
Here relative terrain height is defined as the height relative to the terrain’s lowest point. The
lowest point is mapped to the zero height value. The program handles both high resolution
(building resolving) and low resolution (canopy resolving) terrain maps and generates the needed
data files accordingly. The map file that is produced includes the rasterized canopy polygons and
can be displayed in two or three dimensions for verification purposes by using a simple MatLab
program.

4. Photogrammetric Parallax Correction

When the captured satellite or aerial image is tilted or significantly off nadir, an error is induced
in the location of the top of the building that is used to digitize or define the polygon. The error is
caused by a well-known phenomenon called photogrammetric parallax. The apparent location of
the top of the building could be significantly shifted from its true location. The polygon
associated with the roof of a building must be adjusted to its base to get a better estimate of its
true location. In order to accomplish this correction, the user needs to select one visible
building’s base corner. This base corner ID number (3B from figure 9) is then entered into the
building base input box. This vertex/corner is then used by the main Fortran90 program to make
a simple correction described below. The latitude and longitude coordinates of this selected base
corner allows computations for adjusting all the vertices of the polygon representing the top of
the building.

The adjustment process is done by calculating the differences of latitude and longitude (dLat and
dLon) between the visible building base corner selected by the user and the corresponding vertex
of the polygon representing the top of the building. For example, 3B and its corresponding top
corner 3T in figure 9.

13

 dLat = Lat3T – Lat3B , dLon = Lon3T – Lon3B

Figure 9. Photogrammetric parallax correction (true coordinate adjustment) illustration.

The adjustments for each of the four building base corners are defined as follow:

• At point 3B: Lat3B and Lon3B are defined by the click and given on the GUI’s window.

• At point 4B: Lat4B = Lat4T – dLat, Lon4B = Lon4T – dLon

• At point 1B: Lat1B = Lat1T – dLat, Lon1B = Lon1T – dLon

• At point 2B: Lat2B = Lat2T – dLat, Lon2B = Lon2T – dLon

5. Mapping Geo-coordinates to 3DWF Model Grid

The Fortran90 main program maps the latitude and longitude pair position of each polygon
vertex to the nearest model grid position (x, y) on the model grid domain by calling subroutine
“loctempgrid.” The reason is because the rasterization process is done in the model grid space
and not the geo-coordinate space. This process to identify the correct grid position is illustrated
in figure 10. The initial grid (labeled as 1) coordinate pixt or piyt position is assigned when the
scanned grid’s longitude or latitude is greater than the clicked point’s longitude (lon) or latitude
(lat), or pixt>lon and piyt>lat, respectively. However, this initial guess on the model grid may
not necessarily be the model grid nearest the current vertex. For example, from figure 10, the x
coordinate distance from the clicked point’s lon to grid 2 is shorter than its distance to the initial
grid point 1. Therefore, grid point 2 is selected rather than grid point 1. Performing this test in
both x and y coordinates results in the nearest model grid point being set as the polygon vertex in
the model grid space.

1B Top

dLat

dLon

2T

2B

3B

3T 4T

1T

4B

Tilted direction

14

Figure 10. Mapping polygon vertex to model grid process.

6. Building and Vegetative Canopy Representations

The 3DWF wind model uses two different flow parameterizations. The first flow
parameterization is associated with the vertical wind profile. The vertical wind profile varies
depending on what the underlying canopy type is. The second flow parameterization is a wake
flow parameterization for complex terrain and buildings. This second parameterization requires
an explicit representation of buildings.

To explicitly resolve a building on the model grid, the horizontal resolution should be no greater
than 10 m. We, therefore, categorize the types of binary maps that the rasterization program
creates as canopy-resolving for grids with horizontal resolution greater than 10 m and building-
resolving when the grid resolution is less than 10 m. For a building-resolving binary map, the
second parameterization is activated.

We should note that the vegetative canopy representation is identical for either type of map as it
is not resolution dependent. This representation requires rasterizing the vegetative canopies to
the model grid so that the type and average height of the canopy can be known at every grid
point in order to apply the appropriate vertical wind profile. At coarser resolutions, canopy types
include coniferous, deciduous, suburban, and bare soil.

At finer resolutions, when buildings are resolved, we require a slightly different treatment. The
vegetative canopies are handled in exactly the same manner; it is our treatment of buildings
and/or urban areas that changes. For polygons that represent buildings, there are two things that
we do. First, we produce an augmented terrain file and, second, we create a file that indicates

1 2

4 3

Point lat

lon

nearest model grid
point

initial grid point

compared distances

pixt pixt-1

piyt

piyt-1

15

where the building is in the 3-D model grid (see figure 12, left panel). To produce the augmented
terrain file, we adjust the terrain elevation where buildings have been explicitly resolved in the
following manner. After the rasterization routine has run and we know where a building is
located in the two-dimensional (2-D) grid map, we locate the corner of the building that has the
lowest elevation and add the building height to get the grid represented building height
(figure 11). We then apply the buildings mask on the terrain elevation map and assigning this
new height value to produce the augmented terrain elevation map (see examples in sections 7
and 8).

Figure 11. Illustration of building augmentation of terrain
elevation map for the building resolving map.

After the rasterization process is completed two binary rasterized maps are produced. One of the
map files contains the latitude, longitude, terrain elevation (possibly augmented with building
heights), and canopy height. The second map file contains the canopy patch ID that the user
defined when they were digitizing the canopies as polygons.

7. Outputs

After execution, the rasterization program produces two ASCII files. For reference, we typically
name these files as “CanopygridslayersHR.txt” and “CanopytypeHR.txt” (figure 12). Figures 12
to 14 are results from a different example and are for illustration purposes only. For the file
“CanopygridslayersHR.txt,” as illustrated in figure 12, we have the following format for records:

• The first row is the total number of polygons and it appears only once. After this row,
repeating sequences appear as the following format.

• The second row is the number of polygon vertices (n),

• The third through (n+3) rows are the x, y grid positions of the polygonal vertices,

Roof top

Bldg. h

Terrain

16

• The (n+4)th row is the lower bound on the vertical grid layer where the building is defined,
and

• The (n+5)th row is upper bound on the vertical model grid where the building is defined.

The file “CanopytypeHR.txt” as illustrated in the right panel of figure 12 contains the patch ID,
the canopy type (0 = building), the canopy height in meters, and the canopy cover density
(1 = 100%).

Figure 12. Content of files “CanopygridslayersHR.txt” (left) and “CanopytypeHR.txt” (right).

As discussed in the previous section, the program also produces two binary domain map files,
named “ht_lat_long_tercanopy_fileHR.dat” and “ht_lat_long_patchcanopy_fileHR.dat,”
respectively. These two files are used by the 3DWF model. These binary files contain the
rasterized polygons, as illustrated in figure 13. The 2-D and 3-D graphical representations are
also displayed in appendix B using MatLab. The top panel of figure 13 displays an area zoomed
in to the two drawn buildings of the patch ID map, and the bottom panel of the same figure
shows the buildings as represented in the augmented terrain elevation map.

17

Figure 13. Contents of the canopy patch ID map file (top) and the terrain elevation (m) map file (bottom).

Lowest building’s corners

18

8. Example Rasterization of “U-shaped” Polygon

An example of the rasterization of a “U-shaped” building is shown in figure 14. This zoomed-in
figure shows only a small window where the rasterization of the “U-shaped” building took place.
For this building, it was assumed that the roof was flat and level with a total building height of
10 m; therefore, all grids within the rasterized area have the same height above sea level of
28.62402 m (= the lowest corner’s terrain height of 18.62402 m at the edge of the building (oval
circle) + 10 m). Note that there is one grid with value of 19.0885 m lies inside the U outline as a
result of imperfect drawing during the outlining of the U-shaped building.

Figure 14. Example of an augmented terrain elevation (m) map augmented by a rasterized “U-shaped” building.

19

9. Conclusion

In this report, we have documented initial efforts to leverage the GIS data that is made available
through the Google Maps API. We have implemented a simple GUI that uses the Google Maps
interface to assist a user in defining vegetative canopy coverage areas as well as the location of
buildings. We have also implemented a simple rasterization program using Fortran90 that has
been used to produce building resolving morphology maps for use by the 3DWF model.

As this has been an initial effort, there are a number of improvements that can be made. The
current implementation demonstrates a proof of concept, and as such, is quite rough in its
implementation. We initially implemented the GUI using HTML version 4 and the Google Maps
API version 2. Google has since released version 3 of their API, which is more flexible and
expands on the feature set. Also the current version of the HTML standard is version 5. The
HTML version 5 specification defines and implements the concept of local storage. This could
be leveraged to create a Web application that is cross-platform and not dependent upon
proprietary extensions such as Microsoft ActiveX.

There is also a need to restructure and rethink the implementation of the JavaScript code. It
would be desirable to save the digitized polygons in an object array so that the polygons could be
accessed after their creation and modified as necessary.

The GUI could also be redesigned to leverage Web technologies such as cascading style sheets.
This could be used to give the Web application a more polished finish.

It is also our desire and intent to integrate this tool into a larger suite that is used to control the
execution of the 3DWF model. In light of this desire, we have considered implementing the
rasterization routine using the Java computer language to help simplify some of the aspects of
integration.

20

10. References

Google API Web site. http://code.google.com/apis/maps/ (accessed November 2010).

Sheffer, A. Scan Conversion (part 2) Drawing Polygons on Raster Display; Chapter 8 lecture
viewgraphs, University of British Columbia. 2005, 13–25.

Wang, Y.; Williamson, C.; Garvey, D.; Chang, S.; Cogan, J. Application of a Multigrid Method
to a Mass Consistent Diagnostic Wind Model. J. Appl. Meteorol. 2005, 44, 1078–1089.

Wang, Y.; Williamson, C.; Huynh, G.; Emmitt, D.; Greco, S. 2010, Diagnostic Wind Model
Initialization over a Complex Terrain Using the Airborne Doppler Wind Lidar Data. Open
Remote Sensing Journal 2010, 3, 17–27.

21

Appendix A. Procedure to Prepare Input Files for the 3DWF Model

There are two separate procedures for the GUI and the Fortran90 program:

I. Procedure for the GUI module

1. Activate Mozilla Firefox (or Internet Explorer, if using computer with Windows
operation other than Vista). For Vista users, an add-on named IE Tab2 (FF3.6+) freely
available from the Internet must be installed. Follow steps a to g to download:

a. Open Firefox by clicking “Getting Started” and then click on the orange arrow next
to “Need helps” at the bottom right of the Firefox window.

b. A new window appears with some lists. Click on “Add-ons” at the list under
 “Community.”

c. An “Add-ons for Firefox” window appears. Type “IE” inside the slot “search for
add-ons” and click the green arrow at the end to start searching.

d. A list of all current available add-ons developed by the Firefox community will
appear, ready for download. Select the add-on named “IE Tab 2 (FF 3.6+)”
(developed by ietab.net) by clicking on the green button “Add to Firefox.”

e. A small window will appear with a warning message and with the address link to the
add-on. Click on the address link to activate the “Install Now” button.

f. Click on the “Install Now” button to start installation. A new small window will
 appear and when done, click on “Restart Firefox” button to activate the new feature.
Notice a small Firefox logo will appear at the bottom right corner next to the key
lock logo.

g. Click on that Firefox logo will switch to an IE logo. It will then enable the user to
work inside IE environment and allow saving data file to the local disk. To switch
back to Firefox, click on the IE logo to change.

2. Click “File” and choose “Open File.” A new window appears to allow user to select
the HTML file named “CanopyPolygon_GeneratorAPI3.html.”

3. Left mouse click on the Firefox’s logo at the lower-right corner of the Web page to
change to IE’s logo so that the Google’s satellite map can be displayed. Click on the
“Satellite” option if not default to see the real map.

22

4. For simplicity, only polygon mode or surface painted mode is available in the current
version. Choose the target canopy (building or vegetation area) with the help of zoom
in/out scale on the map. For more accuracy, the user should zoom in as close as
possible. Use the left mouse button to move the crosshair cursor and click on the first
corner of the canopy’s polygon. An Integer ID will label that first corner as “1” and its
longitude and latitude pair will appear on the top of the input panel. The user then
continues onto the next corner following clockwise direction until all interested corners
are clicked.

 Although the Fortran90 codes allow rasterization of a complete convex polygon up to
16 sides and of concave shapes such as L or U shape, it is advisable to divide the
concave shape into 3-sided or 4-sided blocks and then draw and save each block at a
time:

a. For a same height patch, such as in a low-resolution case, each block should overlap
into the other as much as possible to prevent a gap in between due to the adjusting
and shifting of the edge’s grids (see the right side of rectangle in figure 2 in the
main report) during translation from lat/long to grid (pixel) when the plot point’s
lat/long is not at the exact center of the grid.

b. For different heights patch, such as in the case of a building complex with different
heights, the lowest height block should be drawn first and should overlap or extend
into the neighbored higher height block as much as possible to avoid the gap
mentioned previously. The rasterization of the higher height block will erase the
lower height block’s overlapped area.

5. After plotting all corners of a polygon, the user will start to enter input or change the
default 0 or 1 in each of the following slots from top to bottom of the input panel:

a. Enter an integer number >0 for a polygon’s patch ID: Enter any integer number
to label a single polygon drawn on the map.

b. Building or vegetation height (m): Enter the known or approximated height above
ground in meters. For vegetation patch, its height is the averaged tree height.

c. Polygon’s number of sides: Enter the number of sides for each drawn polygon. For
a complex or a concave shape of canopy where it must be divided into three- or
four-sided blocks/polygons, then the number enter will be 3 or 4 accordingly and
not the number of sides of the complex or concave shape. For more explanation,
click the “Help” button.

d. Canopy type (0=building, 1=evergreen, 2=deciduous): Default 0 is for building,
change to 1 for evergreen or 2 for deciduous type of vegetation.

23

e. Map resolution indicator (Enter 1 for ≤10m (HR) and 0 for others (LR)): Enter
1 or 0 to signal whether the binary terrain map to be used in the Fortran90 program
is for building-resolving (high) or canopy-resolving (low resolution), respectively.

f. Polygon’s canopy cover percentage: Enter approximated percentage from 1 to
100 of canopy coverage over each drawn polygon area. Therefore, 100 will be
entered for a polygon of building only. For multi-sided patch/area, each four-sided
polygon or block within a patch is treated to have the same percentage of canopy
coverage as the whole patch area. Click the “Help” button for more hints.

g. Save data: Enter 1 to create a new file, 0 to append subsequent polygons:
Default 1 is to create a new file, or enter 1 to redo all over again from the scratch. It
will automatically change to 0 after the first polygon saving to signal appending of
the next polygon’s data into the same file.

However, if new data is required to be saved in a previously created file from a
previous session, then the default 0 should be left alone to signal appending at the
end of that old file. The user also needs to edit this file manually later to correct the
order of the polygon sequential count number since the new session always starts at
polygon count number 1.

To avoid accidently appending to an old but same name file, the user should make
sure to name a new file differently.

h. Specify path and filename with double \\(Ex:
C:\\Documents\\Googleblgcoords.txt): Enter a filename and its directory path where
it will be saved. Remember to separate subdirectories with a double forward slashes \\
to save the data in a text file type (including “.txt”).

i. Click “Save”and then “Clear data” for each drawn polygon: To save data into the
file, click the “Save” button, and then click “Clear data” to clear old values from the
input panel. These two buttons must be clicked for each drawn polygon or divided
block.

j. Enter 0 (default) if no polygon’s lat/lon adjustment to the true canopy’s base;
otherwise, enter the corner number where its base is visible: Default value 0
means there is no adjustment to be made to the building corners’ coordinates (satellite
image is not tilted or significant). Otherwise, if the building is tilted, its top corners’
longitude and latitude coordinates need to be adjusted to its true coordinates at the
base. In such case, the user needs to locate a base corner where it is visible to the
naked eye, and enter into the slot the number identical to its indicated top corner
number. Next, the user clicks at that base corner on the map and the same number
will appear. Figure A-1 illustrates polygon drawing and the content of the data file for
an assuming case with building coordinate adjustment.

24

Figure A-1. Polygon drawing of a building with coordinate adjustment case (top) and its data file (bottom).

25

k. If no adjustment, click “Add” to update the file and then “Next Polygon” to
continue or to end: If a corner number entered, use mouse to locate (click) the
visible base corner's lat/lon, then click “Add” to add its coordinates to the file, and
then “Next Polygon” to continue or to end: Even in the case of no adjustment, the
user still needs to click the “Add” button to add two zeros to the file indicating no
longitude and latitude recorded, and click the “Next Polygon” button to clear the
input panel and to continue or to end. In the case of adjustment, click the “Add”
button to add the chosen point’s longitude and latitude pair to the file, and then click
“Next Polygon” to clear old inputs from the input panel and to continue on or to stop.

Other convenient features and important notes:

• Repeat the same procedure from the beginning for each drawn polygon or block
and do not skip any step.

• The “Toggle All Drawings:” check box allows user to toggle back and forth the
display of all correctly drawn polygons/blocks during each session.

• The “Remove Bad Drawing” button will help to remove a bad polygon and its
corners’ markers in case the user makes a mistake during drawing.

• The “Delete All Drawings” button will delete permanently all correctly drawn
polygons and their corners’ markers from the map, but not the saved data. After
this button is clicked, the “Toggle All Drawings:” check box will not display any
past drawn polygons on the map.

The content of the saved text file is displayed and explained in details in this report.

II. Procedure for the Fortran90 program

1. In a Linux machine where the main Fortran90 program is stored, type ./RunRaster or
whatever the executable Fortran file is named to perform rasterization of the drawn
polygons prepared by the GUI. The program will prompt with a series of following
prompts:

a. Enter 1 for a higher-resolution map (grid’s width dx, dy<=10 m), 0 for others:
This information to signal building or canopy resolve as mentioned in this report.

b. Enter the number of grid size on x coordinate: This prompt allows the user to
flexibly enter the terrain map’s horizontal grid size. For example: 401 or 501.

c. Enter the number of grid size on y coordinate: This prompt allows the user to
flexibly enter the terrain map’s vertical grid size.

d. Enter a vertical layer’s increment value dz (m): This is the increment value
between vertical layers. Layer number 1 is dz above the ground.

26

e. Enter the path and the filename created by the GUI containing lat/longitude
data (Ex: C://Users//Rasterize//GoogleblgcoordsHR.txt.txt): An example of this
filename is the file “GoogleblgcoordsHR.txt” in this report. Its name is given by the
user during saving process in the GUI module.

f. Enter the path and the binary terrain map’s filename to be read (Ex:
C://Users//Rasterize//ht_lat_long_HR.dat): This is the original input file of a high
or low resolution terrain map.

g. Enter a path and a new filename including .txt type to store grids and layers
information (Ex: C://Users//Rasterize//Canopygridslayers.txt): The user can
name any names to save plotted corners’ grids and the vertical layer position
(integer number) of canopy’s base and top.

h. Enter a path and a new filename including .txt type to store canopy type
information (Ex: C://Users//Rasterize//Canopytype.txt): The user can name any
names to save canopy’s type, patch ID, and density information. This file is
necessary for the 3DWF model’s input.

i. Enter a path and a new filename including .dat type to store output map with
rasterized polygons indicated by terrain+canopy’s heights (Ex:
C://Users//Rasterize//Outter.dat): The user can name any names to produce a
binary output map with terrain and canopy’s heights incorporated.

j. Enter a path and a new filename including .dat type to store output map with
rasterized polygons indicated by patches’ ID and ground cover as 0 (Ex:
C://Users//Rasterize//Outpat.dat): The user can name any names to produce an
identical binary output map but with patch ID (1, 2, 3, etc.) and ground (as 0)
presentation designed for 3DWF’s purpose.

 Hint: The user should examine the output files to make sure no errors occurred. For the
terrain maps, a simple MatLab program will allow viewing in 3D. This viewing is
actually very helpful to double check if there are any unintended gaps between blocks
during rasterizing of a complex building or canopy patch of more than four sides
(except for the special case of rasterizing a U or L shape). If a gap occurred, the user
needs to go back and extend the lower-or-equal-height block’s latitude or longitude
(depending on the directions) of the two corners involved. This can also be
accomplished simply by changing the latitude or longitude a little in the text file
produced by GUI. Another option is the user can choose to re-plot for those particular
two corner points using the GUI page. The user then uses the mouse to copy the new
longitude or latitude directly from the input panel and paste to replace the old value in
the text file.

27

Appendix B. Visualization of an Augmented Terrain Elevation File

Figure B-1 shows a visualization of an augmented terrain elevation file.

Figure B-1. Two-dimensional (top) and 3-D (bottom) MatLab
visualizations of an augmented terrain map illustrating two
10-m-high buildings fused with the terrain.

28

INTENTIONALLY LEFT BLANK.

29

List of Symbols, Abbreviations, and Acronyms

2-D two-dimensional

3-D three-dimensional

3DWF Three-Dimensional Wind Field

API application programming interface

GIS Geographic Information System

GUI graphical user interface

HR high resolution

ID identification

IE Internet Explorer

Lat latitude

Long longitude

LR low resolution

30

No. of
Copies Organization

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 US ARMY RSRCH LAB
 ATTN RDRL CIM G T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND MD
 21005-5066

 3 US ARMY RSRCH LAB
 ATTN IMNE ALC HRR
 MAIL & RECORDS MGMT
 ATTN RDRL CIM L TECHL LIB
 ATTN RDRL CIM P TECHL PUB
 ADELPHI MD 20783-1197

 1 ELEC US ARMY RSRCH LAB
 ATTN RDRL WML B J CIEZAK-JENKINS
 BLDG. 390
 ABERDEEN PROVING GROUND MD
 21005-5069

 7 US ARMY RESEARCH LAB
 ATTN RDRL CIE D
 G HUYNH (5 COPIES)
 Y WANG
 C WILLIAMSON
 ATTN RDRL CIE P CLARK
 ADELPHI, MD

 6 US ARMY RESEARCH LAB
 ATTN RDRL CIE D
 D HOOCK (5 COPIES)
 G VAUCHER
 BLDG 1622
 WHITE SANDS MISSILE RANGE
 NM 88002-5501

TOTAL: 19 (2 ELEC, 7 HCS)

